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Abstract
The double-hexagonalclose-packed localized moment 5f system UPd3 exhibits
four phase transitions below 8 K. We present new measurements of the magnetic
susceptibility of UPd3 single crystals. The phase transitions are attributed to
a sequence of antiferroquadrupolar ordered structures of the U 5f electrons on
the quasi-cubic sites.

From a comprehensive analysis of the neutron scattering, x-ray scattering,
and bulk property measurements of this system, we have deduced a new crystal
field model for UPd3. This model, which has a doublet ground state on the
quasi-cubic sites with a first excited singlet some 4 meV above it, provides
a qualitative understanding of the succession of quadrupolar phase transitions
and order parameters of UPd3. Moreover, the new model also explains the
excitations observed, by inelastic neutron scattering, in UPd3 at 2 K.

1. Introduction

UPd3 is a particularly interesting system because it is one of the small number of metallic
materials that exhibit long-range quadrupolar ordering. In fact it has no fewer than four phase
transitions associated with different quadrupolar order parameters. These have been seen
clearly by neutron scattering [1–4], x-ray scattering [5], and ultrasonic techniques [6] as well
as by measurements of the heat capacity [7, 8], the magnetic susceptibility [8, 9], and the
magnetostriction [10] of single crystals. The uranium 5f electrons are well localized, with the
5f2 configuration. Hund’s rules lead to the 3H4 ground state multiplet (S = 1, L = 5, J = 4).
The large orbital moment gives rise to a strong coupling to the lattice and hence it is not
surprising that this is a system in which quadrupolar effects are dominant.

UPd3 exhibits the double-hexagonal close-packed crystal structure, with the uranium ions
at sites of local hexagonal and local quasi-cubic symmetry: it has a non-ideal c/a ratio of 1.671.
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The measurements referred to above reveal that phase transitions occur at T0 = 7.8 K,
T+1 = 6.9 K, T−1 = 6.7 K, and T2 = 4.4 K. Neutron diffraction [2–4] and resonant
x-ray scattering studies [5] indicate that the phase transition at T0 is to an antiferroquadrupolar
(AFQ) structure of the U 5f electrons that is accompanied by periodic lattice distortions and a
doubling of the crystallographic unit cell. The unit cell in the phase below T0 is orthorhombic,
with the ordered quadrupole moments predominantly on the quasi-cubic sites, and stacked
in antiphase along the c-axis. X-ray and neutron scattering results for the phases below T±1

are consistent only with a rotation and tilt of these quadrupole moments. It is not until the
transition at T2 that a weak antiferromagnetic (AFM) ordering develops, accompanied by
changes in the AFQ order parameter. The AFM moments in this phase are only of the order
of ∼10−2 µB/U atom.

The probable quadrupolar order parameters and symmetry changes for each of the
four transitions have been deduced from ultrasound measurements [6], and resonant
x-ray scattering [5] and neutron diffraction studies [2–4] together with group theoretical
arguments [3]. From these we believe that the transition at 7.8 K is second order with probable
primary order parameter 〈Qx2−y2〉. The transition at 6.9 K is also second order, and the
remaining transitions are first order, with possible order parameters 〈Qzx 〉 and 〈Qyz〉. We
believe that, in the phase below 6.9 K, only 〈Qx2−y2〉 and 〈Qyz〉 are non-zero. The system then
undergoes a strongly first-order transition, at 6.7 K, to a phase in which 〈Qx2−y2 〉, 〈Qzx 〉, and
〈Qyz〉 are all non-zero. In the final phase below 4.4 K, it appears that 〈Qyz〉 vanishes again,
and the transition is accompanied by the development of a small magnetic moment.

In this paper, we present a comprehensive study of the magnetic properties of UPd3. We
have made detailed measurements of the DC magnetic susceptibility from room temperature
down to 0.4 K along the three main crystallographic axes. We also present magnetization
measurements in fields up to 12 T. From the anomalies in the susceptibility and magnetization
at the various transition temperatures, we have mapped out (B, T ) phase diagrams up to
B = 12 T and down to T = 0.4 K for the a-, b-, and c-axes.

We will show that it is possible to understand the physics of the phase transitions within
a three-level approximation based on the quasi-cubic site energy eigenstates, the lowest two
levels of which are degenerate in the high-temperature (above 7.8 K) phase. In what follows
we deduce the crystal field states from the high-temperature data and explain how the phase
transitions arise.

2. Experimental details and results

Three single crystals of UPd3, aligned along the principal crystallographic directions were cut
from larger single crystals previously used for the neutron scattering experiments: an a-axis
crystal of 1.0923 g, a b-axis crystal of 0.1964 g, and a c-axis crystal of 0.7354 g. The main
crystals were grown, at the University of Birmingham, using the Czochralski method with
starting materials of 3N U and 4N Pd.

Magnetization and susceptibility measurements were made using a vibrating sample
magnetometer (VSM) equipped with a top-loading 3He cryostat, constructed by Oxford
Instruments plc. Measurements were made in the temperature range 0.4–80 K and for fields
up to 12 T. The cryostat is operated with the sample immersed in liquid 3He for T < 1.5 K.
For T > 1.5 K, the sample is cooled using 3He as an exchange gas with the 1 K 4He bath
providing the heat sink. Further measurements at temperatures from 2 to 300 K were made
using a SQUID magnetometer (MPMS7, Quantum Design) equipped with a 7 T magnet. The
background signals from the sample holders were measured and found to be negligibly low in
comparison with that of the sample, in each case. Figure 1 shows the results for the inverse
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Figure 1. Inverse magnetic susceptibility of UPd3, measured along the principal crystallographic
axes.

Figure 2. Inverse magnetic susceptibility of UPd3, for temperatures between 2 and 10 K. The
vertical arrows indicate the transition temperatures.

susceptibility of UPd3 along the a-, b-, and c-axes, up to 300 K. Figure 2 shows the results
below 10 K in detail, revealing anomalies at the phase transitions.

3. The anomalies at the phase transitions

The experimental features characterizing the phase transitions, obtained from a wide range of
measurement techniques, are summarized in table 1. The first phase transition at T0 = 7.8 K
is very unusual. It shows up clearly in the ultrasonic data [6], and the x-ray scattering
results [5] show the development of an AFQ phase corresponding to an ordering of Qx2−y2

with wavevector q = [100]. Note that we will refer to the orthorhombic unit cell of the
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Table 1. Summary of experimental findings.

T2 = 4.4 ± 0.1 K T−1 = 6.7 ± 0.05 K T+1 = 6.9 ± 0.05 K T0 = 7.8 ± 0.1 K

Ultrasound Pronounced softening in Softening in C66, No softening in C33 Very large softening
C44 and C66, softening in small dip in C44. on cooling, step in C66. Softening in
C33, with large anomalies in α33 and α44. Small peaks in α33 increase with small C33 with small peak

and α44. Hysteresis in peak in α33. No in α33. No softening
C33 and C44. softening in C44, in C44.

small α44 peak. No
hysteresis in C33 and C44.

�α33 (cm−1) 0.4 0.01 0.005 0.04
�α44 (cm−1) 1 0.04 0.01 None
�C33 (GPa) −1 +1.5 None −2
�C44 (GPa) −2 −0.6 None None
�C66 (GPa) −4 −4 −3 −21

Transition Monoclinic (magnetic) ← Trigonal triple- Monoclinic ← Orthorhombic ←
trigonal triple q q ← monoclinic orthorhombic hexagonal
(g′

44 negative ⇒ AFQ ordering)
First order First order Second order Second order

Order 〈Qx2−y2 〉, 〈Qzx 〉 〈Qx2−y2 〉, 〈Qyz〉, 〈Qx2−y2 〉, 〈Qyz〉 〈Qx2−y2 〉
parameters 〈Qzx 〉
Specific Peak exists but difficult Peak Broad
heat to see—applied peak—applied

field kills it. field enhances it.

Magnetic Peak Peak
susceptibility
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Table 1. (Continued.)

Neutron AFQ ordering on quasi-cubic U sites
scattering/

sound
velocity

Inelastic At 1.7 K, four peaks at At 5 K, modes move closer At 9.9 K, similar to
neutron 1.30, 1.67, 2.20, and together and decrease in 6.2 K and below, not
scattering, and 2.62 meV. intensity. Four peaks at 1.41, 1.77, possible to
low energy At 3.5 K, 1.67 meV peak 2.15, and 2.56 meV. distinguish different

decreases, others At 6.20 K, excitation very excitations.
unchanged. damped, not possible to

observe modes directly.
At 7.10 K, no excitations
distinguishable but
scattering much greater
than background ⇒ at
least one very damped mode.

Inelastic Data at 2 and 10 K. Four modes at ∼4, 8, 14, and 16 meV. 14 and 16 meV modes interact and exchange intensity.
neutron Fifth mode apparent at ∼20 meV only when Q lies in the basal plane. Intensity of all modes decreases at
scattering, higher temperature ⇒ crystal field excitations with depopulation of ground state. All transitions transverse,
higher energy except ∼20 meV longitudinal.
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Table 1. (Continued.)

T2 = 4.4 K T−1 = 6.8 K T0 = 7.8 K

Neutron (1, 0, 2) peak drops sharply. (1, 0, 2) peak develops. Small anomaly in ← (1, 0, 1) scattering
diffraction, (1, 0, 1) peak develops.
unpolarized
neutrons in 4 T
Neutron Moments on both sites ∼0.06 µB at 120 K. Hexagonal sites decrease very little to ∼0.05 µB at 0 K.
diffraction, Cubic sites increase. For T < 20 K, χcubic � χhex .
polarized (a-axis)
neutrons in 4.6 T

(1, 0, 2) scattering predominantly SF + field-induced For T1 < T < T0, (1, 0, 1) scattering entirely
reflection at (1, 0, 0) ⇒ antiferromagnetic, NSF ⇒ arising from structural components
moments along z (c-axis). and from magnetic moments parallel to a-axis.

Intensity � in zero field ⇒ ferrimagnetic
structure, moments parallel to field
direction.

Qzy (CS), Qzy (HE). Qx2−y2 (CD).

X-ray resonant Peaks at (1, 0, 3) and (1, 0, 4) in Peak develops at (1, 0, 4), predominantly in Peak develops above
scattering (π–σ) continue to increase (π–σ) channel, peak at (1, 0, 3) increases T0 at (1, 0, 3) in (π–π) only and

somewhat, peak at (1, 0, 3) in (π–π) strongly in (π–π), much smaller peak at increases strongly.
constant below T2. At T2, intensity (1, 0, 3) in (π–σ) No peak at (1, 0, 4).
of peaks may change discontinuously. also develops and increases.

Entropy No change at T2. Smooth decrease Large drop at T1. Decreases smoothly with depopulation,
(integrated to zero at 0 K. slight anomaly at ∼8.1 K. No change at T0.
specific heat)
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AFQ ordered phase, introduced in [5]. However there is hardly any discernible effect on the
specific heat (or entropy) at T0. Similarly there is only a very small change in the magnetic
susceptibilities as shown in figure 1.

There is no evidence that the transition at T0 is not second order. These observations are
consistent with the three-level scheme for the low-lying crystal field levels that we propose in
section 3 only if the off-diagonal term for the operator corresponding to Qx2−y2 is very small
indeed.

The two transitions at T±1 are extremely close to each other. They were first distinguished
separately in the ultrasound study [6], and can just about be deduced from the later x-ray
data [5]. The main entropy changes occur at these transitions. There are sharp changes in the
susceptibilities at T−1 and T2. For further details, refer to table 1.

3.1. The crystal field states in the high-temperature phase

Early neutron scattering investigations by Buyers and co-workers [1] revealed well-defined
crystal field excitations in UPd3, demonstrating that the 5f electrons are localized in this
compound. The strong mode observed at around 15 meV was attributed to the hexagonal sites,
with a Jz = |0〉 ground state and Jz = |±1〉 excited doublet. This interpretation is supported by
the subsequent polarized neutron diffraction measurements of the separate susceptibilities of
the two sites [4]. For the hexagonal sites at low temperatures, χz tends to zero, whilst the basal
plane susceptibility becomes temperature independent. The crystal field splitting is far too big
for the hexagonal sites to play any role in the phase transitions and so this paper will focus on
the quasi-cubic sites. We will now consider how the crystal field states at the cubic sites may
be deduced from a study of the entropy, susceptibility χz , and the neutron scattering results.

The magnetic contribution to the entropy up to T = 30 K has been deduced from the
available specific heat measurements [7]. In the phase above T0, it is not compatible with a
singlet ground state on both sublattices. However, the entropy above the first phase transition
is well described by a doublet ground state on one sublattice and a singlet ground state on
the other sublattice, provided that the excited singlet state on the first sublattice is at a much
lower energy than the excited states of the second sublattice. In other words, we deduce that
the ground state on the hexagonal sites is indeed a singlet, but that the ground state on the
quasi-cubic sites is a doublet. Inelastic neutron scattering measurements above T0 show an
excitation at ∼4 meV which we attribute to the quasi-cubic sites.

Above T0, χz follows a clear Curie–Weiss behaviour as shown in figure 2. Since χz for
the hexagonal sites is zero when the excited doublet is not occupied (i.e. for T � 160 K), the
measured χz at these temperatures is entirely due to the quasi-cubic sites. The value of the
Curie–Weiss constant, θ , is −50.7 K. It is interesting that this is comparable with the value of
the exchange deduced by Murray and Buyers from the dispersion in their neutron scattering
data.

Taken together, the entropy and χz are clear evidence that the crystal field state ground
state in the high-temperature phase is a doublet on the cubic sites. The wavefunctions for
the ground doublet and first excited singlet were estimated by considering the lack of entropy
change at the first phase transition, together with the values of Jz (=1.6) and Jx (=0.9) deduced
from the magnetic susceptibilities in the high-temperature phase. The allowable symmetries
of the wavefunctions are discussed in section 4.

The expressions that we give in figure 3 are possible wavefunctions but there are certainly
others that would fit the data as well. Since the crystal field Hamiltonian for the quasi-cubic
sites contains six independent parameters and has nine basis states, it was not possible to use
these wavefunctions to deduce the values of the crystal field parameters.
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14.9 meV|-1〉
|1〉

|0〉

HEXAGONAL

SITES

0.66|4〉+0.58|1〉+0.48|-2〉

0.66|-4〉-0.58|-1〉+0.48|2〉

0.52|3〉+0.68|0〉-0.52|-3〉

CUBIC SITES

0 meV

4 meV

Figure 3. The low-lying levels of the new crystal field level scheme for UPd3 proposed in this
paper.

eV

0.71|4〉+0.69|1〉-0.14|-2〉

-0.71|-4〉+0.69|-1〉+0.14|2〉

0.30|3〉+0.91|0〉-0.30|-3〉

CUBIC SITES

|-1〉
|1〉

14.9 meV

HEXAGONAL

SITES

|0〉0 m

1.7 meV

Figure 4. The low-lying levels of the crystal field level scheme for UPd3 proposed by Buyers et al
[1].

Our new level scheme differs from that of Murray and Buyers, shown in figure 4, who
used their crystal field fit from the hexagonal sites to estimate the crystal field splitting on the
cubic sites. This led them to believe that there was also a singlet ground state on the cubic
sites. They regarded this as very satisfactory because it immediately explained why UPd3 does
not order magnetically.

Since we have clear evidence for a magnetic doublet on the cubic sites albeit with a rather
small Jz-value, but a sizable Curie–Weiss temperature, magnetic ordering would indeed be
possible. However, the hexagonal crystal structure will frustrate simple antiferromagnetism
and so reduce any transition temperature to well below |θ |. The quadrupolar interactions are
strong and so the reason that there is no magnetic ordering seems to be that the quadrupolar
transitions occur first.

From the matrix elements Jx connecting our crystal field wavefunctions, we would expect
the magnetic susceptibility χx for the quasi-cubic sites to be entirely Van Vleck in form. In
fact, the experimental data show that it increases with every phase transition. We believe that
this behaviour can be explained by the effects of the quadrupolar order parameters, since at
every phase transition more of the singlet is mixed into the former doublet states, pushing up
the value of Jx each time. We also expect a large, but temperature-independent contribution
to χx from the hexagonal sites.
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4. What is special about a three-level system?

We believe that the physics of the phase transitions arises from the special nature of this three-
level system. Our model for the transitions is based on the quasi-cubic site energy eigenstates,
the lowest two levels of which are degenerate in the high-temperature (above 7.8 K) phase.
We consider the effect of each of the four quadrupolar and three magnetic operators on this
system.

Since the total angular momentum, J , is a good quantum number, the wavefunctions are
expressed in the |Jz〉 basis, within a manifold of constant J . Inspection of the crystal field
Hamiltonian for the quasi-cubic sites reveals that doublet states always have the form

|d1〉 = a|4〉 + b|1〉 + c|−2〉
|d2〉 = a|−4〉 − b|−1〉 + c|2〉

and singlet states are either of the form

|s〉 = d|3〉 + e|0〉 − d|−3〉
or of the form

|s〉 = 1√
2
(|3〉 + |−3〉).

The following analysis takes the former singlet as the appropriate state, although all the
arguments can be shown to hold for the latter form also.

We may write the crystal field Hamiltonian in matrix form for these three states as

Hcf =
(

� 0 0
0 0 0
0 0 0

)

where the first excited singlet lies at an energy � above the ground state doublet. We have
estimated � at 4 meV from the neutron scattering data.

Then, from these general states given above, the matrix elements of the operators can be
calculated, and shown to have the following symmetrical forms:

Qx2−y2 =
( 0 A A

A 0 B
A B 0

)
Qzx =

( 0 A′ A′
A′ 0 B ′
A′ B ′ 0

)

Qxy =
( 0 −Ai Ai

Ai 0 −Bi
−Ai Bi 0

)
Qyz =

( 0 A′i −A′i
−A′i 0 B ′i
A′i −B ′i 0

)
.

For the crystal field scheme detailed in figure 3, the values of these matrix elements are A = 5.5,
B = 0.0, A′ = 3.3, and B ′ = 1.8.

Thus it may be seen that, for the four quadrupolar operators, only two possible symmetries
exist, i.e. that shared by Qx2−y2 and Qzx , and that of Qxy and Qyz . The matrix elements of
Qx2−y2 , for example, have the same symmetry as those of Qzx , but the same magnitude as those
belonging to Qxy . This has important consequences in terms of the effect of one operator on the
expectation value of another, and therefore for the possible linear combination of quadrupolar
Stevens operators which may contribute to the order parameter in each phase. It may be seen,
for instance, that a non-zero 〈Qx2−y2〉 automatically implies that 〈Qzx 〉 is also finite, and an
exactly similar situation arises for 〈Qxy 〉 and 〈Qyz〉. It is to be expected that the magnitude
of the matrix elements of Qx2−y2 and Qxy are the same, as are those of Qzx and Qyz , since
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+B 

 

0 

 

 
B>0 

+B 

-B 

 

0 

∆ ∆

|e〉- |s〉 

|o〉 

|o〉 

|s〉α β+ |e〉 |s〉α β+ |e〉 

α β  

|e〉- |s〉 α β  

Figure 5. Eigenfunctions and eigenvalues of Hcf − Jx2−y2 〈Qx2−y2 〉Qx2−y2 . |e〉 and |o〉
denote the even and odd combinations of the doublet ground state |e〉 = 1√

2
(|d1〉 + |d2〉) and

|o〉 = 1√
2
(|d1〉 − |d2〉).

the structure is quasi-cubic. If the analysis is carried out for the other form of the singlet, the
matrices for Qx2−y2 and Qxy are found to be

Qx2−y2 =
( 0 C −C

C 0 B
−C B 0

)
Qxy =

( 0 −Ci −Ci
Ci 0 −Bi
Ci Bi 0

)

and the symmetry of these with the other two quadrupolar operators is exactly similar to the
former case.

An important difference between Qxy and Qyz and the other two operators is that, for these
two, the eigenvalues are unchanged by the transformation of the order parameter Q → −Q,
whereas for Qx2−y2 and Qzx they are different. This is illustrated in the figures 5 and 6 below.
By treating the A- and B-terms as having two separable effects, it can be seen that the downward
shift of the ground state is dependent on the sign of the matrix element B , since this determines
whether it is the odd or even combination of the original doublet states which becomes the
ground state. The A-term always mixes the singlet into the even combination, whilst the odd
state remains pure. In Landau theory, Q �= −Q requires that the expansion for the free energy
must contain a third-order term in Q, and so the phase transition must be first order, but for
Q = −Q the free energy is even in Q and may lead to a second-order transition. Thus we
find that the symmetry of the operator Qx2−y2 is consistent with its being the primary order
parameter at the second-order transition at 7.8 K only if the value of the matrix element B is
essentially zero, this also being in agreement with the lack of entropy change at this transition.
The development of Qyz at T+1 is consistent with the observed second-order transition at this
temperature, with the first-order transition at T−1 having order parameter Qzx . We believe that
the parallel symmetries of Qx2−y2 and Qzx mean that the development of Qzx at T−1 enhances
Qx2−y2 , and that this can be seen in the x-ray scattering data [5] as an enhancement of the
(1, 0, 3) peak in the (π–π) channel, following the development of the (1, 0, 4) peak in the
(π–σ) channel at T−1. Although the matrix element B of Qx2−y2 is vanishingly small, the
corresponding B ′-element for Qzx is comparatively large, and hence it is at this transition that
a sudden drop is seen in the entropy, owing to the splitting of the ground state doublet.

It is important to stress that it would be impossible to justify as many as four phase
transitions from a two-level system. In the phases below T+1, the x-ray scattering results have
indicated possible AFQ structures based on an orthorhombic unit cell, in which there are four
inequivalent sublattices. For an Ising system where only a single ion is taken into account, a
ferromagnetic exchange would certainly be the more energetically favourable. However, with
a crystal with four sublattices an AFM exchange is possible, and represents a system in which
the tendency to order magnetically may be strongly frustrated by lattice effects.
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∆  
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∆

Figure 6. Eigenfunctions and eigenvalues of Hcf − Jxy〈Qxy 〉Qxy and Hcf − Jyz〈Qyz 〉Qyz .
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|o〉 

α|e〉-β|s〉 

α|e〉-β|s〉 

α|s〉+β|e〉 α|s〉+β|e〉 

y 

Figure 7. Energy level scheme for the low temperature phase with 〈Qx2−y2 〉 and 〈Qzx 〉 nonzero.

The matrix elements for the magnetic operators were found to be of the form

Jx =
( 0 C −C

C 0 0
−C 0 0

)
Jy =

( 0 Ci Ci
−Ci 0 0
−Ci 0 0

)
Jz =

( 0 0 0
0 D 0
0 0 −D

)

which would lead us to expect the magnetic susceptibility χ xx to be Van Vleck in form, whilst
χ zz is entirely Curie type. The increase in the susceptibility χ xx at every phase transition
indicates progressively more and more mixing of the singlet into the ground state.

5. Mean field fit to the inelastic neutron scattering data

We have analysed the low-temperature inelastic neutron scattering results [11], by considering
the energies at which we would expect dipolar excitations to occur in the four-sublattice AFQ
model. If the matrix elements for the quadrupolar operators are as in section 4 above, then it
is instructive to consider a Hamiltonian for a low temperature phase of the form

H4 = Hcf − Jx2−y2〈Qx2−y2〉Qx2−y2 − Jzx 〈Qzx 〉Qzx

which may be represented by the four matrices

H =
(

� ±A ± A′ ±A ± A′
±A ± A′ 0 ±B ± B ′
±A ± A′ ±B ± B ′ 0

)
=

(
� ±P(′) ±P(′)

±P(′) 0 ±Q(′)
±P(′) ±Q(′) 0

)
,

so the combinations +P,−P, +P ′,−P ′ form the matrix elements for each of the four
sublattices. The resulting energy level schemes depend on the sign of the Q(′) matrix element,
as shown in figure 7 below.

A similar level scheme can also be drawn for Q′ = (B − B ′) > 0 and −(B − B ′) < 0.
Thus in this phase, there is a dipolar coupling between the two lowest states, and we would
hence expect four peaks in the neutron scattering data, at energies 2Q − x , 2Q + y, 2Q′ − x ′,
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and 2Q′ + y ′ due to the splitting of the doublet and the admixture of the singlet for the four
sublattices. The experimental results [11] at 1.7 K show two strong peaks at 1.68 and 2.20 meV,
along with two weaker peaks at 1.28 and 2.60 meV.

The mere existence of four peaks at this temperature supports the hypothesis that there are
four sublattices, since it would be impossible to justify more than two peaks with a single-ion
model. The energies of the peaks allow the matrix elements P and Q to be calculated directly,
and from these the matrix elements A and B may be deduced as A ∼= 0.9, A′ ∼= −0.2, B ∼= 0.0,
and B ′ ∼= 1.0. The matrix element B , which is that connecting the doublet states for Qx2−y2 ,
is therefore confirmed to be vanishingly small, as had been deduced from the lack of entropy
change at the first phase transition. Thus the neutron scattering data support the hypotheses
that the first phase transition at T0 = 7.8 K is second order with primary order parameter
Qx2−y2 , in which the doublet splits only very little, and that the phase below T2 is consistent
with an AFQ state with four sublattices with order parameters Qx2−y2 and Qzx .

Knowledge of the values of these matrix elements allows us to calculate the expectation
values 〈Qx2−y2〉 and 〈Qzx 〉 at T = 0, from which an estimate of the respective exchange
interactions can be made. These calculations, when averaged over all four sublattices,
yield 〈Qx2−y2〉T =0

∼= 1.2 and 〈Qzx 〉T =0
∼= 4.1, from which Jx2−y2

∼= −3.0 meV and
Jzx

∼= 1.0 meV. Self-consistent mean field theory predicts Jx2−y2 to be of the order of the
crystal field splitting, �, with Jzx considerably smaller, being close to kB Tc, i.e. 6.7 K. The
values calculated from experiment are consistent with the expected magnitudes, since Jx2−y2

is equivalent to a temperature of about 35 K, and is thus slightly less than �, acceptably close
given the tolerances of experimental data and the limits of mean field theory, particularly in
a regime of four inequivalent sublattices. Mean field theories tend to give an overestimate of
transition temperatures, and the calculated Jzx corresponds to a transition temperature of about
11.6 K.

This discussion shows how the admixture of different symmetries of distortion for the
different sublattices leads to four dipolar excitations, as measured in our inelastic neutron
scattering studies. A more detailed explanation of the order parameters in the various phases
of UPd3 will be given in a forthcoming publication.

6. Conclusions

We have re-analysed the available experimental data for UPd3, and have produced both a new
energy level and wavefunction scheme for the high-temperature phase, and a model for the
progression of the phase transitions. Our three-level scheme has a doublet ground state with a
first excited singlet some 4 meV above,consistent with neutron scattering and entropy data. We
have presented possible wavefunctions for these states, derived from fitting to experimental
results for the magnetic susceptibility and to low-temperature inelastic neutron scattering.
The doublet ground state is absolutely necessary to explain both the entropy and magnetic
susceptibilities, which we have demonstrated to obey a Curie–Weiss law.

By using this new insight into the crystal field levels in the high-temperature phase, and
setting this alongside previous experimental deductions about the probable order parameters
at each transition, we have developed a model for the phase transitions that has the potential to
explain many of the observed anomalies. We believe that the special nature of the three-level,
AF system based on a ground state magnetic doublet is what gives rise to the observed number
and sequence of transitions. We have shown that this model is qualitatively consistent with
x-ray scattering, magnetic susceptibility, entropy, and neutron scattering measurements. This
system is particularly exciting, since we are unaware of any other three-level system with a
magnetic doublet ground state and AF exchange.
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